A-Day: Due Thurs., Dec 17 B-Day: Due Fri., Dec 18

2009 Momentum 4

- 1. A cannon shoots a cannonball (give diagram)
 - A. What is the net momentum before?
 - B. So, what must be the net momentum after?
 - C. So, which has more momentum after: the gun or the bullet?
 - D. Below the diagram, calculate the velocity of the cannon after.
 - E. Calculate the momentum of the cannon after.
 - F. Calculate the momentum of the ball after.
 - G. Again, which has more momentum after: the gun or the bullet?

- Use the diagram above to answer the following. 2.
 - A. Draw what happens after.
 - B. How much momentum does the right cart have?
 - C. How much momentum is there before (use variables)?
 - D. How much net momentum must there be afterwards?
 - E. As the right cart gets heavier, what happens to the left cart?
 - F. If the right cart were infinitely heavy (or held in place), what is the final velocity of the left cart?
 - G. Remembering that $\Delta v = v_f v_i$, what is the change of velocity of the left cart?

- moving at V and the right cart is at rest.
 - A. What is Σp_{before} ?
 - B. What does Σp_{after} have to be?
 - C. Since the objects are combined after, what kind of collision is this?
 - D. What is the combined object's mass after the collision?
 - E. What is the combined object's velocity?

doesn't learn very fast. At one point he loses control

and "meets" Slim Kim. We know Jim is 60 kg. Kim

(Use $\Sigma p_b \pm I = \Sigma p_a$)

is only 40 kg. How fast are the two moving afterwards?

- 7. The Olsen Twins are driving identical 1,000 kg cars (*it's a twins thang*).
 - A. Calculate and label the initial momentum of each car.
 - B. When they stop, what is their final momentum (*label it above*)?
 - C. Calculate and label Δp for each car.
 - D. Which one had a bigger change of momentum?
 - E. Remembering that impulse equals the change of momentum, which one had the bigger impulse
 - F. Which one needed a bigger force to stop?
 - G. What's the final velocity for each car?
 - H. Using a kinematic equation, find the time for Mary Kate to stop.

10. Balance the reactions below. (*Hint: treat the* (CrO_4) *as if it was just another element. Don't break it up.*)

 $_$ Fe + $_$ O₂ \rightarrow $_$ Fe₂O₃

 $K_3N +$ Ca(CrO₄) \rightarrow Ca₃N₂ + K₂(CrO₄)

Use the Impulse graph notes to answer the following:9. A. Find the impulse given on the graph.

B. If the object is 6 kg and moving 3 m/s to the right to begin with, use the impulse you just found to find its final velocity. (Use $\Sigma p_b \pm I = \Sigma p_a$, again.)

- 11. The picture at below shows a test tube with a cork sealing the opening.
 - A) Is this an open or closed reaction?
 - B) Will the mass of his products be greater than, less than, or equal to his reactants?
 - C) Why?
 - D) What Law does this setup allow us to prove?

