2009 Momentum 3

Before

 Σp_{before}

200 kg

cannon

±Ι

0 =

=

- A 6 kg mass collides with a 9 kg mass. After the collision, what happens?
 A. Does the 9 kg mass speed up, slow down, or continue at the same speed?
 - B. Does the 9 kg mass speed up, slow down, or continue at the same speed?
- 2. Use the equations at the right to answer the following questions (there can be more than one answer for each).
 - A) Which have two independent objects beforehand?B) Which show a combined object afterwards?
 - C) Which one shows all objects are at rest beforehand?
 - D) Which show all objects are at rest deformand?
 - E) Which show an object she at lest arter wards?E) Which show an object speeding up due to a force?

0.4 m/s After

.

 Σp_{after}

 $p_{cannon} + p_{ball}$

- A) $p_B + I = p_A$
- B) $p_{1B} + p_{2B} = p_{1A} + p_{2A}$
- C) $p_{1B} + p_{2B} = p_{1+2A}$
- D) $p_{1+2B} = p_{1A} + p_{2A}$
- E) $p_{1B} + p_{2B} = 0$
- F) $0 = p_{1A} + p_{2A}$
- A 1 kg object moving 10 m/s to the right bumps into a 12 kg object moving 2 m/s to the right. Afterwards the 12 kg object is moving 3 m/s to the right. Calculate the final velocity of the 1 kg object.
- A. On line A, write the conservation of momentum equation for this situation.B. On line B, put in "mv" for any "p" and "Ft" for any external I.
- C. Put in what you are given and solve for the final velocity of the 1 kg object.
- 4. A 3 kg cannonball is shot from a 200 kg cannon. The cannon recoils backwards at 0.4 m/s backwards. What is the velocity of the ball after it is shot?
 - A. Since the ball is sitting in the cannon, beforehand, what is the initial velocity of the cannon and ball?
 - B. What is the net momentum before?
 - C. Since momentum MUST be conserved, how much total momentum must there be afterwards?
 - E. Is the final velocity of the cannon + or -?
 - F. Following the same procedure as the previous problem, solve for the final velocity of the ball.

- Slim Jim is running 2m/s on the dock and jumps into a boat. How fast is Jim and the boat moving afterwards? A. Calculate the initial momentum?
 - B. How much momentum does there have to be afterwards?
 - C. What is the combined mass of Jim in the boat?
 - D. Under the diagram, write the conservation of momentum equation and solve for the final velocity.

3 kg

ball

- 7. Given 3Na₂CO₃, (study the diagram at the right)
 - A) What is the coefficient?
 - B) What is the subscript on oxygen?
 - C) How many sodium atoms are there in each molecule?
 - D) How many molecules of sodium carbonate are there?
 - E) How many total oxygen atoms are there?
 - F) How many total sodium atoms are there?
- 8. Give reaction notation for A) $3CaCrO_4 =$

The graph at the left shows the force acting on an object. The object begins at rest.

- A. Which letter shows a negative force?
- B. At letter A, is the force positive or negative?
- C. So, from 0 to 3 seconds, will the object will move to the right or left?
- D. At letter B is the force positive or negative?
- E. From 3 to 12 seconds, does the object speed up or slow down?
- F. At letter C is the force positive or negative?
- G. At letter D is the force positive or negative?
- H. From 12 to 18 seconds, does the object speed up or slow down?

Coefficient Expanded

$$2Al_2O_3 = Al_2O_3 + Al_2O_3$$

Subscript So, $2Al_2O_3 = Al_4O_6$ Reaction
Notation

B) $6Na_2O =$

Studying for the final.

- 9. An object is at rest
 - A) Give two kinds of energy it could have.
 - B) Give a kind of energy it could not have.
- 10. The picture at the right shows an object moving to the left at 8 m/s.
 - A) Identify force A:
 - B) Identify force B:
 - C) Identify force C:
 - D) Calculate force B:
 - E) Calculate force C:
 - F) Calculate how much energy it has.

G) If all the forces are shown, will the object have a positive or negative acceleration?