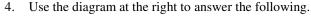
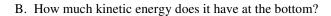

2009 Energy 3

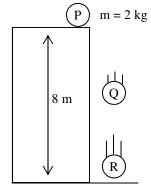
What kind of energy: Ep, Ek, PEel, +W, -W, or 0 (no energy).

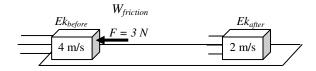

A A compressed spring.	E Making an object go faster.
B Friction acting on an object.	F An object at rest on the ground.
C A moving object.	GSlowing down an object.
D An object above the ground.	HLowering an object to the ground.

D In object doove the ground.	VCIIIIE	s an object to the gr	
Match the Conservation of energy equations at the right with the following situations.			
A An object is thrown into the air. Find how high it goes.	1.	Ek - W = Ek	
B An object at rest is moved.	2.	Ep = Ep + Ek	
C A moving object slows down due to friction.	3.	Ek = Ep	
D An object is dropped. How fast is it going part way down?	4.	Ek - W = 0	
E A spring is compressed.	5.	PEel = Ek + Ep	
F A compressed spring shoots an object into the air.	6.	0 + W = Ek	
G A moving object is stopped.	7.	0 + W = PEel	



3. Use the pendulum at the left to answer the following.


- A. What kind of energy does it have at M?
- B. What kind of energy does it have at N?
- C. If it has 100 J of energy at M, how much does it have at N?
- D. How does the total energy change as the pendulum swings?



A. Calculate the object's energy at the top.

C. How much potential energy does it have at letter Q?

$$\Sigma E_{\text{before}} \pm W = \Sigma E_{\text{after}}$$

Step 2:
$$E_k - W = E_k$$

Step 3:

Step 4:

Let me walk you thru how to use the Law of Conservation of Energy...

A 6 kg object is moving 4 m/s to the right.

A 3N force slows the object down to 2 m/s.

I've done steps 1 and 2 for you.

- A. In step 3 put the equations for Ek and W into the equation USING ONLY VARIABLES!
- B. In step 4 put in the numbers that you are given in the problem above (velocities, forces, mass).
- C. Solve for the distance it takes for the object to stop. (This is the same procedure for every Conservation of Energy problem!)

2009 Energy 3—p2

	Use the same process that I just showed you to solve the following problems.
6.	A 4 kg object is moving 2 m/s when it is pushed by a 5 N force for 7 m. How fast is it going afterwards? A. $E_{before} = $ Work? = $E_{after} = $
	B. Conservation of Energy equation:
	C. Solve.
	C. If the force pushed for 10 seconds, how much power was used to speed up the object?
7.	A 3 kg object is moving 2 m/s. It comes to rest by compressing a spring 0.8 meters. Find the spring constant of the spring. A. E _{before} = Work? = E _{after} =
	B. Conservation of Energy equation:
	C. Solve.
8.	A 4 kg object is at rest on the ground. A force accelerates it to 10 m/s in 20 meters. Calculate the force. A. $E_{before} = $ Work? = $E_{after} = $
	B. Conservation of Energy equation:
	C. Solve.