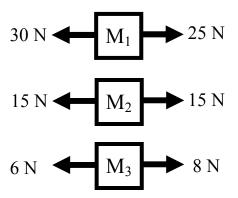
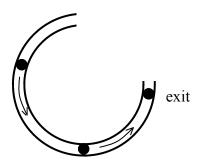
2009 Forces 1


You will need these notes: "Forces and Newton's First Law"; "Types of Forces".

- 1. For each of the following pairs of objects, which one has more inertia?
 - A. A freight train or a car?
 - B. A ping pong ball or a baseball?
 - C. A fast bowling ball or a slow bowling ball?
- D. A 20 kg mass or a 10 kg mass?
- E. A rock on the earth or a rock in space?
- F. A fast baseball or a bowling ball at rest?
- 2. Identify the following forces as F (applied), T, F_W, F_f (friction), or F_N.

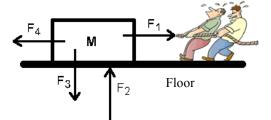
Α.	Due to a	string
1 1.	Dac to a	541115.

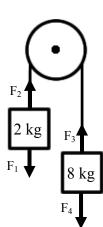

- B. ____ Opposes weight for objects on surfaces.
- C. You push down on an object on a table,
 - this increase.
- D. ____ Caused by gravity.
- E. ____ Would decrease on the moon.
- F. Decreases if a surface is smooth.

- G. You place a heavy object onto a board.
 - The board will break if this is too small.
- H. Always vertical.
- I. ____ If a surface is tilted, this changes direction, too.
- J. Has the units of newtons.
- K. ____ Doesn't exist for hanging objects.
- 3. While a force is acting on an object, give three things that can happen.

- 4. What is the net force on M_1 ?
- 5. What is the net force on M_2 ?
- 6. What is the net force on M_3 ?
- 7. Which of the above masses: M_1 , M_2 , or M_3 ?
- A. Which could be at rest?
- B. ____ Acceleration is negative.
- C. ____ Acceleration is positive.
- D. ____ Has a net force of 0 N.
- E. Has a net force (Fnet $\neq 0$)

- F. Has balanced forces.
- G. ____Could be changing direction.
- H. Has unbalanced forces.
- Could be a constant speed.
- J. ____ Could be slowing down to the left.




- 8. A ball is moving inside a tube, as shown on the diagram at the left.
 - A. When it leaves the tube, will it have a circular path or a straight path?
 - B. What do we call any force that keeps an object moving in a circular path?

Static or kinetic friction?

- Is slipping friction.
- ____ Is gripping friction.
- Acts to keep an object from moving.
- Tries to stop an object that is already sliding.
- 10. Two very small people are pulling a box. Identify the four shown forces as $F_{Applied}$; T; F_{W} ; F_{N} .
 - A. F_1 the two men pulling WITH A ROPE.

 - B. _____ F₂— the force pushing up by the floor.
 C. ____ F₃— the force pulling down on the mass.
 - D. F_4 the force trying to stop the mass from moving.
 - Which force is in the negative x-direction?
 - F. Which force is in the positive y-direction?
 - G. ____ Which force is in the positive x-direction?
 - Which force is in the negative y-direction?
 - I. Which forces would be used in this equation: $\Sigma F_v = ma_v$?
 - J. Which forces would be used in this equation: $\Sigma F_x = ma_x$?

- 11. Two masses are attached by a rope that is threaded around a pulley, as shown. Identify the four forces.
 - A. ____ F_1 force pulling down on the 2 kg mass.
 - B. $_$ the force of the rope pulling up on the 2 kg mass.
 - C. F_3 the force pulling up on the 8 kg mass.
 - __ F₄— the force pulling down on the 8 kg mass.
 - E. Which two forces are equal?
 - F. Why?
 - G. Calculate F1.
 - H. Calculate F4.
 - I. Which forces are y-direction forces?
 - J. Which forces are x-direction forces?