\qquad
\qquad

Current, Voltage, and Resistance

More current means more water flowing or more electricity flowing (more electrons moving).

Water current is measured in gallons per minute. Electrical current is measured in Amps (which is coulombs/sec).
Devices that use more energy,
use more current. Electricity is flowing electrons. The amount of electricity flowing is called current.

Very little current.

A lot of current.

Voltage is what pushes electrons thru a circuit. More voltage gives more push or more pressure. More voltage will push more electrons. Higher voltage means more current.

A stronger battery gives more
ltage like a more powerful pump.
A stronger battery gives more
voltage like a more powerful pump.

A volt is a Joule/Coulomb. Voltage gives potential energy to electrons. More voltage gives more potential energy to each coulomb of charge.

Dams hold back water. Resistors hold back electrons. Both reduce the current.

Resistance slows down electricity. More resistance means less electricity, because it cannot flow as easily.

Resistors

A waterwheel slows falling water, turning it into something useful (work).

In a circuit, anything that does work has resistance: light bulbs, radios, computers, etc.

Resistors use voltage. Each resistor uses part of the voltage (energy), lowering back to zero (back to the ground). The battery raises it back up, starting the cycle again.

Ohm's Law

Ohm's Law shows how current changes when voltage or resistance changes.

How current changes:

Increasing voltage increases current.
Increasing resistance decreases current.
Decreasing voltage decreases current.
Decreasing resistance increases current.

Ex. How much current does a 12 V battery push through a 3Ω resistor?	
$\mathrm{V}=12 \mathrm{v}$ $\mathrm{R}=3 \Omega$ $\mathrm{I}=?$	$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12 \mathrm{v}}{3 \Omega}=4 \mathrm{~A}$

