Electric Charge and Force

- 1. Prepare these numbers for calculations by putting them into standard units:
A. 15 μCB. 4.9 nmC. 8 MHzD. 6 mmE. 7 centicoulombs
- 2. How much charge does 1,200 electrons have?
- 3. An object has a charge of 2.4 μ C.
 - A. Is it positive or negative?
 - B. Did it gain or lose electrons?
 - C. How many electrons were gained or lost?
- 4. How many electrons were gained or lost by a 4.5 milliC charge?
- 5. Possible or impossible:

Find the force between them.

A. 12 electrons

6

B. 15.5 electron

C. 6.3 electrons

D. 1,507 electrons

A 3 C charge is 4 mm away from a 6 C charge.

- 8. How does the electric force change?
 - A. If one of the charges is tripled?
 - B. If the distance doubles?
 - C. If one of the charges is halved?
 - D. If the distance is halved?
- 9. Two electric forces are acting on a positive charge, as seen at the right.

7. A 7.2 μ C charge is 20 cm away from a 3.8 μ C charge. Find the force.

- A. Using the ideas of attraction and repulsion, decide whether the two blank charges are positive or negative.
- B. Calculate the net force on the charge (including magnitude and direction).
- C. If the positive charge has a mass of 9.4×10^{-6} kg, what is its acceleration?
- D. How much force is acting on the charge at the upper right?

Prefixes: Mega (M) = $x10^{6}$ Kilo (k) = $x10^{3}$ Centi (c) = $x10^{-2}$ Milli (m) = $x10^{-3}$ Micro (μ) = $x10^{-6}$ Nano (n) = $x10^{-9}$

Electron Charge $l \, electron = -1.602 \, x \, 10^{-19} C$

ZYN

H =

6. A 3 C charge is 4 mm away from a 6 C charge. Find the force between them. 1 - 11

$$F = 9 \times 10^{9} (3 \times 6) = [, 0] \times 10^{16} N$$

some as $(4 \times 10^{-3})^{2}$

7. A 7.2 μ C charge is 20 cm away from a 3.8 μ C charge. Find the force. (-7 - -6) - 9 V 10-6)

$$= 9_{X10} \frac{9(7.7X10 (5.8X10))}{(.7)^2} = 6.16 \text{ N}$$

How does the electric force change? A. If one of the charges is tripled? \overline{F} ($3\pm imes$) $\overline{78}$, $\overline{60}$ B. If the distance doubles? $\sqrt{4}$ F 8.

- B. If the distance doubles? 1/4 F C. If one of the charges is halved? F/2
- D. If the distance is halved? 4 X force
- Two electric forces are acting on a positive charge, as seen at the right. 9.
 - A. Using the ideas of attraction and repulsion, decide whether the two blank charges are positive or negative.
 - B. Calculate the net force on the charge (including magnitude and direction).
 - C. If the positive charge has a mass of 9.4×10^{-6} kg, what is its acceleration? F=ma
 - D. How much force is acting on the charge at the upper right?

Coulomb's Law Charge 1 Charge 2 (in Coulombs) (in C)Electric $q_1 q_2$ Distance Force • between (in N) the two Coulomb's Constant charges $=9 \times 10^9 \text{Nm}^2/\text{C}^2$ (in m)

15N
18N
18N
18Sin30° = 9N
18Cos30° =
18(.866) = 15.6N

$$from = 9 + 15 = 24N$$

 $F_{x_{t}} = 15.6N$
 $F_{x_{t}} = 15.6N$
 $F_{x_{t}} = 5.6N$