1. *Given these vectors: $\mathrm{A}=425 \mathrm{~m}$ at $75^{\circ} ; \mathrm{B}=68 \mathrm{~m}$ at $130^{\circ} ; \mathrm{C}=91 \mathrm{~m}$ at $319^{\circ} ; \mathrm{D}=213 \mathrm{~m}$ at 234°. If $\mathrm{R}=\mathrm{A}-3 \mathrm{~B}+2 \mathrm{C}+\mathrm{D}$, Give R in meters and degrees: $\mathrm{R}=$
2. Given these vectors: $\mathrm{A}=125 \mathrm{~m}$ at $125^{\circ} ; \mathrm{B}=48 \mathrm{~m}$ at $330^{\circ} ; \mathrm{C}=100 \mathrm{~m}$ at $28^{\circ} ; \mathrm{D}=210 \mathrm{~m}$ at 212°. If $\mathrm{R}=-2 \mathrm{~A}+\mathrm{B}-3 \mathrm{C}+2 \mathrm{D}$, Give R in meters and degrees: $\mathrm{R}=$

3. A plane moving $80 \mathrm{~m} / \mathrm{s}$ at 45° encounters a wind moving $20 \mathrm{~m} / \mathrm{s}$ at 160°. Realizing that this is just adding vectors, calculate the plane's total speed relative to the ground.

4. Object A or B?
A. \qquad Which has the greatest vertical acceleration?
B. \qquad Which has the greater maximum height?

5. Which has the greatest "hang time": object A or B?
6. Which kind of projectile motion problem: I—horizontally launched; II—how high; III ground-to-ground?
A. \qquad A rock is launched from a sling shot going $15 \mathrm{~m} / \mathrm{s}$ at 65°. The ceiling is 10 m tall. Does it hit the ceiling?
B. \qquad A bicyclist riding $8 \mathrm{~m} / \mathrm{s}$ drops a rock from their hand, which is 0.8 m above the road. How far away does the rock land?
C. \qquad A rabbit hops $4.2 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with each hop. How far apart are the rabbit's hops?
7. A. Solve for part A above.
B. Solve for the time to the top of the arch.
C. Now that you have the time, in the x -direction solve for how far in the x -direction the top of the arch is.

8. * A projectile is shot horizontally from the top of a 1.8 m tall table.
It lands 2.5 m away. Calculate how fast it was shot.
9. A ball rolls off of a 95 cm tall table (change to meters). It lands 165 cm away. How fast was it rolling along the table before it rolled off?
10. An 6 kg object is sitting on a table.
A. What is the weight of the object?
B. *What is the normal force acting up on the object?
11. A 10 kg object is now sitting on a table. Calculate the weight and normal force acting on the object. Also show arrows.
12. How much is the normal force if you push down on the object with 5 N ?

If there are no other forces, then the scale has to support the weight of the object: $F_{N}=F_{W}$.

The scale shows the magnitude of the normal force.

Q1: $-3 \mathrm{~B}=204$ at $310^{\circ} ; 2 \mathrm{C}=182$ at 319°. So, $\mathrm{R}=\left(425 \mathrm{~m}\right.$ at $\left.75^{\circ}\right)+\left(204\right.$ at $\left.310^{\circ}\right)+\left(182\right.$ at $\left.319^{\circ}\right)+\left(213 \mathrm{~m}\right.$ at $\left.234^{\circ}\right)$
Q11: $\Delta \mathrm{y}=-1.8 \mathrm{~m} ; \mathrm{Vyi}=0 \mathrm{~m} / \mathrm{s} ; \mathrm{t}=0.606 \mathrm{sec} ;$ Since $\mathrm{S}=\mathrm{D} / \mathrm{T}$, then $\mathrm{S}=2.5 / 0.606=4.125 \mathrm{~m} / \mathrm{s}$.
Q13: $\mathrm{Fw}=6(9.8)=58.8 \mathrm{~N}$, so the table must support 58.8 N . So $\mathrm{F}_{\mathrm{N}}=58.8 \mathrm{~N}$.

