Due Thurs., Sept 30 (B-day)
Due Fri., Oct 1 (A-day)

1. $* \mathrm{~B}=2.1 \mathrm{~cm}$ at $150^{\circ} .-3 \mathrm{~B}=$

2010-11 PreAP Two Dimensions 3

2. If $\mathrm{A}=3.5 \mathrm{~cm}$ at 60°, then $-2 \mathrm{~A}=$
3. A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north.
A) $\Delta X_{\text {total }}=$
B) $\Delta \mathrm{Y}_{\text {total }}=$
C) Using Xt and Yt , draw the triangle:
D) Calculate the resultant's magnitude and direction.

4. An object moves 28 m at 55° and then 16 m at 30°.
A) On the diagram, resolve vector 1 and 2 into their components. (Now you have only x 's and y's. YEA! And the rest of this problem is like \#9, above.)
B) Find $X_{\text {total }}$:
C) Find $Y_{\text {total }}$:
D) With $X_{\text {total }}$ and $Y_{\text {total }}$, draw your resultant's triangle below and calculate the resultant's magnitude and direction.

Now on your own, using the "Adding Vectors" notes:
6. Add these vectors together, being sure that all angles start at the $+x$ axis and keeping track of negatives.
A. At the bottom right, add them graphically (You have two paths. Redraw like "Crazy and Lazy").
B. Add them together doing the same procedure as above (or like on the graph in class).

7. Vector $\mathrm{A}=15 \mathrm{~m}$ and Vector $\mathrm{B}=5 \mathrm{~m}$. Vector B can swivel, as shown.
A. What is the largest the resultant could possibly be?
(What is the greatest displacement from your starting position?)
B. What is the shortest the resultant could possibly be?
(What is the shortest displacement from your starting position?)
8. A cannon shoots its cannon ball from the ground to the ground. The cannon shoots the ball at 68° and $170 \mathrm{~m} / \mathrm{s}$. Calculate its range (how far away it lands). (You should be able to do this, now.)

9. * An object is launched horizontally from the top of an 8 m tall ledge going $30 \mathrm{~m} / \mathrm{s}$.
A. *Since it is launched horizontally, what is its launch angle?
B. * In the y-direction solve for the time to the ground.
C. * In the x-direction find how far away it lands (its range).
10. Another object is launched horizontally with an initial velocity of $22 \mathrm{~m} / \mathrm{s}$ from the top of a 1.2 m tall table. How far away does it land?
11. Mass or Weight?
A. \qquad 18 Newtons
B. 15 kilograms
C. \qquad *Doesn't exist in space.
D. \qquad Does exist in space.
E. Same on the moon.

Mass (in kg) is all of an object's atoms and molecules (its matter). Weight (in N) is gravity's pull on your weight.
12. What is the weight of a 12 kg object?

Weight equals mass times the acceleration due to gravity.

1: $3 \mathrm{~B}=6.3 \mathrm{~cm}$ at $150^{\circ} ;-3 \mathrm{~B}=6.3 \mathrm{~cm}$ at 330° (opposite direction).
$3 \mathrm{~A}: ~ \mathrm{~B}=-\mathrm{D}$ or $\mathrm{D}=-\mathrm{B} . \quad 3 \mathrm{C}$: One way is $\mathrm{A}+\mathrm{D}$
9A: $\theta=0^{\circ} ; 9 B: \mathrm{t}=1.28 \mathrm{sec} ; 9 \mathrm{C}: \Delta \mathrm{x}=38.3 \mathrm{~m}$
11C: Weight (you still have your atoms and molecules in space, I hope)

