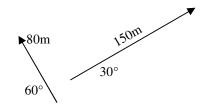
2011 PreAP Two Dimensions 5

1. Give the correct magnitude and directions, given the following x and y totals.


A.	* $x_{total} = 12 \text{ m}$	$y_{total} = -6 m$	$R_{mag} =$	$R_{direction}(\theta) =$
B.	* $x_{total} = -8 m$	$y_{total} = -6 m$	R _{mag} =	$R_{direction}(\theta) =$
C.	* $x_{total} = 18 \text{ m}$	$y_{total} = 5 m$	$R_{mag} =$	$R_{direction}(\theta) =$
D.	$x_{total} = -7 m$	$y_{total} = 16 \text{ m}$	R _{mag} =	$R_{direction}(\theta) =$

Now, using the "Adding Vectors" notes:

2. Add these vectors together, being sure that all angles start at the +x axis and keeping track of negatives.

3.

- A. At the bottom right, add them graphically (You have two paths. Redraw like "Crazy and Lazy").
- B. * Fill in the chart and find the resultant's mag and direction..

0

ÓÓ

00

 $\bullet \circ$

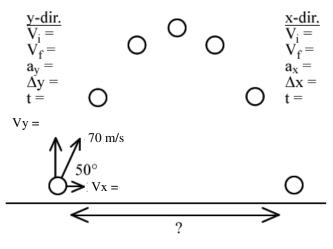
Ó

Ó

Ó

Ground

Ó


Ò

		Magni- tude	Direction	X-comp	Y-comp
	V_1	80 m	*		
	V_2	150 m	30°		
			Totals		
		R	Magn.		
			Direction		

As we saw in class, a projectile's motion can be broken up into its x and y components. From the graphic at the left:

- A. * What is its y-direction acceleration?
- B. * What is its x-direction acceleration?
- C. * So, what equation can we use in the x-direction?
- D. If its initial x-velocity = 3 m/s, what is its final x-velocity?
- E. What is its y-velocity at the very top?
- F. What variable will be the same for both the x and y directions?

4. * A projectile is launched 70 m/s at an angle of 50°. It is shot from the ground, to the ground.

- A. * You have the velocity and its angle, calculate the Vx and Vy (and label them on the diagram). These are initial vel.
- B. * What is its y-direction acceleration? (Label)
- C. * What is a_x ?
- D. Since it is launched from the ground and lands back on the ground, what is Δy ?
- E. * What is Vf in the y-direction?
- F. Calculate the time in the y-direction.
- G. Since it has no x acceleration and you have time, calculate the distance it lands away from its launch position (*which is known as its range*).

1) using $\tan^{-1}(y/x)$ 1A) mag = 13.4m $\theta = -26.6^{\circ}$ (4th Q) 1B) mag = 10 m $\theta = 36.9 + 180 = 216.9^{\circ}$ (3rd Q) 1C) $\theta = 15.5^{\circ}$ 2) Direction for V₁ = 120° R = 170 m $\theta = 58.1^{\circ}$ 3A) -9.8 m/s² 3B) 0 m/s² C) S = D/T 4A) Vx = 45 m/s Vy = 53.6 m/s 4B) a_y = -9.8 m/s² 4C) 0 m/s² 4E) Vy_{final} = -53.6 m/s