PreAP Physics Final Review

1. How many significant figures do each of the following numbers have?
A. 6050
B. 20.13
C. -0.00130040
D. 1.0040×10^{6}
E. 0.1500
2. Using the previous numbers, do the following math operations, giving your answers with the correct number of significant figures.
I. $\quad \mathrm{B}(\mathrm{C})=$
II. $\mathrm{A} / \mathrm{B}=$
III. $\mathrm{A}+\mathrm{B}=$
IV. $B+C+E=$
3. Convert the following numbers to standard units.
A. $52 \mathrm{~cm}=$ \qquad m
C. $\quad 6.8 \mathrm{MHz}=$ \qquad Hz
E. $\quad 3.2 \mathrm{~km}=$ \qquad m
B. $8.2 \mathrm{~nL}=$ \qquad L
D. $4.5 \mu \mathrm{C}=$ \qquad C
F. $1 \mathrm{hr}=$ \qquad sec
4. Convert $350 \mathrm{~m} / \mathrm{s}$ to $\mathrm{cm} / \mathrm{min}$.
5. A car moving $25 \mathrm{~m} / \mathrm{s}$ stops in 5 seconds.
A. How far did it move before it stopped?
B. Calculate the acceleration of the car.
C. If the car is 850 kg , what force did the engine provide?
6. The same 850 kg car starts at rest. After moving 120 m it is moving $42 \mathrm{~m} / \mathrm{s}$ to the right.
A. How much time was necessary for the car to accelerate?
B. Calculate the impulse on the car.

7. Use the graph at the left to answer the following.
A. Calculate the change of velocity for the first 4 seconds.
B. Calculate Δv between 4 and 7 seconds.
C. Calculate $\Delta \mathrm{v}$ from 7 to 12 seconds.
D. What is the total Δv of the object shown on the graph?

There are two kinds of forces: contact forces (when touching occurs) and field forces (forces at a distance). When using Newton's 3rd Law: contact forces oppose contact forces; field forces oppose field forces.
8. Contact or Field force?
A. \qquad Tension
C. \qquad Can cause accelerations
B. \qquad Normal force
D. \qquad Gravity
E. \qquad Electrostatic force (like a balloon rubbed on hair)
9. A box is sitting on a table.
A. What force opposes the normal force of the table pushing up on the box?
B. What force opposes the force of weight pulling down on the box?
10. Slim Jim pulls with 35 N on a 10 kg box across the floor at constant speed.
A. Draw all of the forces acting on the box.

B. Write Newton's Second Law for both the x and y directions for the box.
C. Calculate the force of friction on the box.

11. A. On the dot, draw a force diagram for the mass.
B. Write Newton's Second Law for the mass in both the x and y directions.
C. Solve for the acceleration of the mass down the ramp.
12. Calculate the gravitational force between a 12 kg mass and a 50 kg mass that are 3 m apart.
13. Are the following physical quantities vectors or scalars?
A. \qquad Mass in kg
C. \qquad Speed in m/s
E. Acceleration in m/s ${ }^{2}$
B. \qquad Force in N
D. \qquad Velocity in m / s
F. \qquad Time in seconds

14. Slim Jim's "Spring Rocket" pushes him to $12 \mathrm{~m} / \mathrm{s}$ in 0.8 seconds. Combined, Slim Jim and the rocket are 85 kg .
A. Calculate his average acceleration.
B. Calculate the average force of the spring.
C. Calculate the impulse given to the rocket.
15. Slim Jim and Bim end up at the park and balance on the see-saw. Jim is 60 kg , of course.
A. If the see-saw stays balanced, who is giving more torque?
B. Calculate Bim's weight and mass.

16. A. Calculate the potential energy of Jim at the top of the ramp
B. Calculate the height of the ramp.

PreAP Physics Final Review

1. How many significant figures do each of the following numbers have?
A. $6050 \quad 3 \mathrm{SF}$
B. 20.134 SF
C. -0.001300406 SF
D. $1.0040 \times 10^{6} 5 \mathrm{SF}$
E. $0.1500 \quad 4 \mathrm{SF}$
2. Using the previously numbers, do the following math operations, giving your answers with the correct number of significant figures.
I. $\mathrm{B}(\mathrm{C})=-0.026177052=-0.02618$ (round up)
II. $\mathrm{A} / \mathrm{B}=300.5464481=301$ (least \# of SF, 3 SF)
III. $\mathrm{A}+\mathrm{B}=6070.13=6070$ (round to 1's place)
IV. $\mathrm{B}+\mathrm{C}+\mathrm{E}=20.2786996=20.28$ (decimal farthest to right)
3. Convert the following numbers to standard units.
A. $52 \mathrm{~cm}=$ \qquad .52 \qquad m
C. $6.8 \mathrm{MHz}={ }_{-} 6.8 \times 10^{6}$ \qquad $\mathrm{Hz} \quad$ E. $\quad 3.2 \mathrm{~km}={ }_{-} 3.2 \times 10^{3}=3200 \mathrm{~m}$
B. $8.2 \mathrm{~nL}={ }_{-} 8.2 \times 10^{-9}$ \qquad L D. $4.5 \mu \mathrm{C}=_4.5 \times 10^{-6}$ \qquad C F. $1 \mathrm{hr}=60 \mathrm{~min}=3600 \mathrm{sec}$
4. Convert $350 \mathrm{~m} / \mathrm{s}$ to $\mathrm{cm} / \mathrm{min}$.

Convert $350 \mathrm{~m} / \mathrm{s}$ to $\mathrm{cm} / \mathrm{min}$.
$\frac{350 \mathrm{mec}}{1 \mathrm{sec}}\left(\frac{100 \mathrm{~cm}}{1 \mathrm{ka}}\right)\left(\frac{60 \mathrm{sec}}{1 \mathrm{~min}}\right)=2.1 \times 10^{6 \mathrm{~cm} / \mathrm{min}}$
5. A car moving $25 \mathrm{~m} / \mathrm{s}$ stops in 5 seconds. So is $a<c e l$.

$$
\begin{array}{ll}
\text { A. How far did it move before it stopped? } \\
v_{i}=25 \mathrm{~m} / \mathrm{s} & \Delta x=\ldots \\
t=55=c & \Delta x=\frac{1}{2}\left(v_{F}+v_{i}\right) t \\
v_{F}=0 \mathrm{~m} / \mathrm{s} & \Delta x=\frac{1}{2}(25)(5)=62.5 \mathrm{~m}
\end{array}
$$

B. Calculate the acceleration of the car.

$$
a=\frac{\Delta v}{t}=\frac{v_{F}-v_{i}}{t}=\frac{0-25}{5}=-5 \mathrm{~m} / \mathrm{s}^{2}
$$

C. If the car is 850 kg , what force did the engine provide?

$$
\Sigma F=m 2=850(-5)=-4250 \mathrm{~N}
$$

6. A car starts at rest and after moving 120 m is driving $42 \mathrm{~m} / \mathrm{s}$.
A. How much time was necessary for the car to accelerate?

$$
\begin{aligned}
240 & =42 t \\
t & =5.7 \sec
\end{aligned}
$$

$t=-\quad v_{i}=0 \mathrm{~m} / \mathrm{s} \quad \Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t$
$120=\frac{1}{2}(42) t$
$\Delta_{x}=120 \mathrm{~m} \quad V_{F}=42 \mathrm{~m} / \mathrm{s}$
B. Calculate the impulse on the car. need forte or mass, use same mass

$$
\begin{aligned}
I=\Delta_{P} & =P f-P i \\
& =42(850)-0=3.57 \times 10^{4} \mathrm{kgm} / \mathrm{s}
\end{aligned}
$$

7. Use the graph at the left to answer the following.
A. Calculate the change of velocity for the first 4 seconds.
vel, is $\mathrm{m} / \mathrm{s} \quad-2(4)+\frac{1}{2}(-384)=$
OR $\frac{\mathrm{m}}{\mathrm{s}^{2}}$ (sec) $=$ area $-8-6=$
B. Calculate Δv between 4 and 7 seconds.
$3(-5)=-15 \mathrm{~m} / \mathrm{s}$
C. Calculate Δv from 7 to 12 seconds.
$\frac{1}{2}(-5)(12-7)=\frac{-1}{2}(-5)(5)=$

$$
-12.5 \mathrm{~m} / \mathrm{s}
$$

D. What is the total Δv of the object shown on the graph?
addem up: $-14-15-12.5=-41.5 \mathrm{~m} / \mathrm{s}$
There are two major categories of forces: contact forces
(when touching occurs) and field forces (forces at a distance).
8. Contact or Field force? (Newton's 3rd Law forces must be both contact or both field forces)
A. C Tension
C. both Can cause accelerations
B. \qquad Normal force
D. \qquad Gravity
E. F Electrostatic force
(like a balloon rubbed on hair)
9. A box is sitting on a table.
A. What force opposes the normal force pushing up on the box? box pushing down on table
B. What force opposes the force of weight pulling down on the box? grav, of box pulling

10. Slim Jim pulls with 35 N on a 10 kg box across the floor at constant speed.
A. Draw all of the forces acting on the box.

$$
\begin{aligned}
& \text { B. Write Newton's Second Law for the } \\
& \sum F_{x}=F_{F}-T=m(0) \stackrel{F_{y}}{N}-m g=m(0)
\end{aligned}
$$

C. Calculate the force of friction on the box.

$$
F_{F}-T=0 \quad T=F_{F}=35 \mathrm{~N}
$$

11. A. On the dot, draw a force diagram for the mass.
B. Write Newton's Second Law for the mass in both the x and y directions.
$\Sigma F_{X}=m g \sin \theta-\mu F_{N}=m \partial$ $\sum F_{y}=F_{N}-m g \cos \theta=m(0)$
$F_{N}=m g \cos \theta=50,8 \mathrm{~N}$
C. Solve for the acceleration of the mass down the ramp. $m g \sin \theta-\mu F_{N}=m \partial$

$$
\begin{array}{r}
m 6(\sin \theta)-.2(50.8)=5.6 a \\
2=2.41 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

12. Calculate the gravitational force between a 12 kg mass and a 50 kg mass that are 3 m apart.

$$
F_{8}=G \frac{m_{1} m_{2}}{r^{2}}=6.673 \times 10^{-11}(12)(50) / 3^{2}=4.45 \times 10^{-9} \mathrm{~N}
$$

13. Are the following physical quantities vectors (magnitude and direction) or scalars (just magnitude)?
A. \leq Mass in kg
B. $\quad \vee$ Force in N
C. \leq Speed in m / s
D. $\quad V$ Velocity in m / s
E. \cup Acceleration in $\mathrm{m} / \mathrm{s}^{2}$
F. \leq Time in seconds

14. Slim Jim's "Spring Rocket" pushes him to $12 \mathrm{~m} / \mathrm{s}$ in 0.8 seconds. Slim Jim in the rocket is 85 kg .
A. Calculate his average acceleration.
$\partial=\frac{\Delta v}{t}=\frac{v G-v_{i}}{t}=\frac{\Omega-0}{8}=15 \mathrm{~m} / \mathrm{s}^{2}$
B. Calculate the average force of the spring.

$$
F=m \partial=85(15)=1275 \mathrm{~N}
$$

C. Calculate the impulse given to the rocket. $1020 \mathrm{kgm} / \mathrm{s}$
$I=\Delta P=P_{F}-P_{i}=85(12)-0=0$.
15. Slim Jim and Bim end up at the park and balance on the see-saw. Jim is 60 kg , of course.
A. If the see-saw stays balanced, who is giving more torque?

Same: one with more mass has less distance (Jim)
B. Calculate Bim's weight and mass.

