
2011 PreAP Linear Motion 9

You already know that $\sin 30^\circ = 0.5$ (if you are in degrees). Let's learn inverse functions. \sin^{-1} is inverse sin. You push "Inv" or "2nd" and sin. Try it by putting in $\sin^{-1}(0.5)$ and you should get "30".

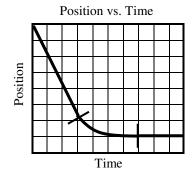
- 1. Given the following, find θ . A. * Sin θ = 0.8660; θ =
- B. * Tan θ = 4/5; θ =

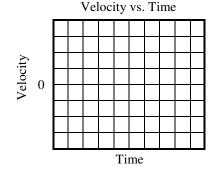
- 2. * A.Calculate the length of the hypotenuse.
 - * B. Calculate the angle (do not use the hypo for this):
- 3. An object accelerates at 6 m/s² for 3 seconds. During this time it travels 40 m **to the right**.
 - A. Since the object moves to the right is the displacement + or -?
 - B. Solve for the initial velocity of the object. (Use the kinematic equations. Show variables and equation.)

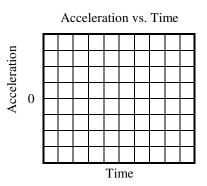
<u>Variables</u>: <u>Equation</u>: Solve

- 4. * An object is moving 30 m/s **to the right**. After 5 seconds it is moving 10 m/s **to the left**. Find the acceleration of the object. Variables: Equation: Solve:
- 5. A ball is thrown 35 m/s into the air. How far up does it go? (Use the "Freefall" notes if you need help.)

 * Variables: Equation: * Solve:
- 6. An object moves 4.5 m/s for 6 seconds without accelerating. How far did it move in that time? Variables: *Solve:
- 7. +, -, or 0?


A. ____ Velocity when moving to the right. E. _____ Acceleration if the speed doesn't change.


B. ____ Acceleration if moving left and slowing down F. _____ Velocity if the position doesn't change.


C. ____ Acceleration if moving to the right an speeding up. G. ____ Horizontal position if to the right of the origin.

D. ____ Velocity if falling. H. ____ Displacement if moving to the left.

8. Transfer the Position vs. Time graph to the velocity and acceleration graphs below. You can assume that each vertical square is 1 m and each horizontal square is 1 sec.

3) 4.33 m/s 4) remember that Vf is neg (moving left), so $a = -8 \text{ m/s}^2$

5) 62.5 m (remember that Vf = 0 m/s and a = -9.8 m/s² 6) 27 m