. A beam of light of wavelength 560 nm in air hits an equilateral glass prism perpendicularly. Because it is equilateral, the geometry is pretty easy and you know the index of refraction for glass. (I'll help you fight thru this.)
A. * First, calculate the wavelength of the light in glass.
B. * Since the light ray hits perpendicular to the surface of the glass, what angle will it have inside the glass?

2011 PreAP Light and Optics 6

C. * Draw the light ray after it has passed straight into the glass. Determine the angle at the second glass boundary.

Use your "Lens/Mirror Equation and Magnification" notes. And you can work in centimeters.
3. A. For the above diagram, $p=$ \qquad ; $q=$ \qquad ; $\mathrm{h}=$ \qquad _.
B. Calculate the focal length for this lens.
C. Calculate the height of the image.
D. Calculate the magnification of the image.
$\begin{array}{lll}\text { 1A) } 368 \mathrm{~nm} & \text { 1B) since it hits perpendicular, both sides hit at }\end{array}$ the same time and it goes straight thru.
1C) You should easily know what angle θ is. But this isn't the right angle for using Snell's law. If you get an error from Snell's Law, then it reflects instead of refracts.

