Heat and Thermo 5

Slim Jim is pushing or pulling on the piston as shown. The arrows show the direction the piston moves. Things to remember: 1) when a gas is compressed its molecules speed up due to the collision with the piston, raising its temperature and internal energy, like a bat hitting a bat; 2) the "system" is the gas molecules inside the piston; 3) the piston's normal force always pushes down (that's what makes the gas molecules go down after they hit the piston); 4) the gas molecules always push up on the piston (that's what keeps the piston from falling, otherwise known as "gas pressure").

1. Which diagram above shows the following?

	A.The gas increasing in temperature.F.B.Positive work done on the gas.G.C.Negative work done by the gas.H.D.Gas losing internal energy.I.E.Negative work done on the gas.	Positive work done by the system. The system gaining internal energy. The piston losing potential energy. The gas molecules gaining kinetic energy.	1. A: I B: I C: I G: I H. I I. I			
	The First Law of Thermodynamics says a gas can increase its inter (change of pressure). It is written as $\Delta U = Q + W_{on the gas} OR \Delta U$ these are equivalent.	rnal energy (U) from either heat or work = $Q - W_{by the gas}$. Let me show you why				
2.	A sample of gas absorbs 200 J of heat while 60 J of work is done of A. What is Q? B. What is W _{on the gas} ?	on the gas, compressing the cylinder. C. What is ΔU ?	2A: +200J (added) 2B: +60J 2C: 200 + 60 = +260J			
3.	There is 2001 of heat exchanged in an endothermal process for a gas. The gas does -60 L of work					
	A. What is Q? B. What is W _{by the gas?}	C. What is ΔU ?	3A: +200J (endo=Qin) 3B: -60J 3C: 200-			
4.	So, it doesn't matter if the work is on or by the gas, only that the gas was compressed. 400 J of heat is removed from a gas while 250 J of work is done on the system. Calculate the change of internal energy.					
5.	300 J of work is done by the system while 1200 J of heat is added of internal energy of the gas?	to the system. What is the total change				

But we generally talk about the pressure and volume of a gas, instead of force and distance. I expect that you know how to find the volume of a cylinder: $\pi r^2 h$; or a rectangular solid: l(w)h.

Also, even though we know that the pressure of the gas does increase as the piston compresses, this is too hard to calculate, so we pretend that the pressure is constant (isobaric).

- 6. *A piston has a radius of 6 cm. It moves down 12 cm under a pressure of 3 atmospheres (3.03×10⁵ Pa).
 A. Calculate the area of the circular piston.
 - B. Calculate the change of volume of the piston.
 - C. Calculate the work done by the gas.

PreAP Heat 5— p2	Specific heat	Liquid	Solid	Latent Heat	L _{fusion}	L _{vaporization}
	aluminum	1180	899	aluminum	3.97x10 ⁵	1.14×10^{7}
You can calculate total heat for substa	Boiling point	2494°C				
Let me walk you thru it. 7 4 kg of aluminum is at 80°C How m	750°C?	Freezing point	660°C			
A. Label the mometer B. Mark the worry ab rect phas C. The alun D. The alun E. Rememb amount o point.	the boiling point and final first and final temp out an exact position e. and the starts as what and the starts as what and the starts as what point of the start of the starts as the starts as the start of heat necessary to point and the starts of the starts as the s	reezing point erature on the n. Just make phase? phase? and that $\Delta T =$ raise the alum	of aluminur e thermomet sure they ar $T_{final} - T_{initia}$ ninum to its	n on the ther- er. Don't e in the cor- d, calculate melting	A. B. C. D. E.	See above. $Ti = 80^{\circ}C$ $Tf = 750^{\circ}C$ Solid (below 660^{\circ}C) Liquid Q = (4)(899) (660-80) = 2.09E6J
Now that melted.	aluminum is at 660	°C (its meltir	ıg point), it ı	needs to be		
F. Will you aluminu	use the latent heat c n?	of fusion or v	aporization t	o melt the	F.	Fusion: melting is "unfusing"
G. Calculate	e the heat necessary	to melt the al	uminum.		G.	Q = mL fusion = 4(3.97x10 ⁵) = 1.59E6J
H. What is the starting tempe	Н.	660°C				
I. Now, calculate the heat ne	cessary to raise the a	aluminum fro	om its meltin	g point to 750°C.	I.	Q = 4(1180) (750-660) = 4.25E5J
J. Calculate the total heat necessary to raise the aluminum from 80°C to 750°C.						Add em up: 2.09E6J + 1.59E6J

1C: +1D: 50 J1E: 5 m/s2C: -2E: 0 m/s3B: +4: -5: increase6A: -6B: -6C: + $7A: A = \pi r^2 = 0.0113 \text{ m}^2 (r = 0.06 \text{ m})$ 7B: $\Delta V = -1.36\text{E}-3 \text{ m}^3$ 7C: W = -411 J

+ 4.25E5J = 4.11E6J