2011 PreAP Electrostatics 3

From the demo in class:

1. A negative rod is rubbed against the top of the metal apparatus. The pith balls attached to the metal ball fly out.
A. Draw what happens to the pith balls inside.
B. What does this prove for us about safety and lightening?
2. A positively charged rod is brought close to an electroscope.

A. Does the rod have more electrons or protons?
B. What is the rod probably made of and what was it rubbed against to make it positive?
C. Draw which side of the electroscope is positive and negative.
D. This is called charging by:
E. At the bottom of the electroscope are positively charged triangles and negatively charged circles. Draw which shape will be attracted to the leaves of the electroscope.
3. Electric field lines point the direction a positive charge would move. Positive charges move \qquad from positive charges and \qquad negative charges. So, electric field lines point \qquad positive charges and \qquad negative charges.
4. Draw the following electric field situations.

Metal sphere

5. A charged glass rod is placed near a single metal sphere.
A. Why is the glass positive?
B. What is the charge of the left side of the sphere when the rod is next to it?
C. What is the total charge (net) of the sphere when the rod is next to it?
D. This is called charging by \qquad .
E. When the glass is removed, what is the charge on the left side of the sphere?

6. Two metal spheres are near a negatively charged rod.
A. What kind of rod is it (probably)?
B. What is the charge on the right side of sphere 2 ?
C. What is the net charge on sphere 1 ?
D. If you touched sphere 2 it would end up with a \qquad charge.

And the units shall set you free.... And in this chapter it will.
7. A -6 C charge is placed at a point that has an electric field strength of $4 \mathrm{~N} / \mathrm{C}$.
A. * What force does it feel?
B. Will the charge move with or against the field?
8. A $2 \mu \mathrm{C}$ charge is placed in a $5.8 \times 10^{-4} \mathrm{~N} / \mathrm{C}$ electric field.
A. Calculate the electric force on the charge.
B. Will the charge move with or against the field?
9. A $8.5 \mu \mathrm{C}$ charge feels a force of $2.5 \times 10^{-5} \mathrm{~N}$. Calculate the electric field strength.

earth
10. A. * In the left picture the gravitational field (g) the mass feels is:
B. In the left picture the gravitational force is:
C. What provide g ?
D. * So, how many masses are necessary for g ?
E. * What is g for the same position when the mass is removed?

So, gravitational field is about the position. OR-it must be an external field. (Can't act on itself.)
11. Two charges are configured as shown.
A. * Calculate the electric field at the point due to the left charge.
B. * Calculate the electric field at the point due to the right charge.
C. Remembering that electric fields are vectors, calculate the total electric field at the point.

A negative charge is then placed at the point.
D. * Calculate the net electric field at the point (where the $-2 \mu \mathrm{C}$ charge is).
E. * What is the force on the $-2 \mu \mathrm{C}$ charge?

The charges are moved.
F. Calculate the net electric field for the new configuration.

Q7: N/C times C give N: 24 N ; Negatives move against the field (field is direction +'s go); 10A: $10 \mathrm{~N} / \mathrm{kg}$; 10D: one (the earth) 10E: same $10 \mathrm{~N} / \mathrm{kg} ; ~ \mathrm{Q} 11 \mathrm{~A}: 3.375 \times 10^{9} \mathrm{~N} / \mathrm{C} ; \mathrm{Q} 11 \mathrm{~B}: 5 \times 10^{9} \mathrm{~N} / \mathrm{C} ; ~ \mathrm{Q} 11 \mathrm{D}$: the same as in Q11C.
Q11E. Mult your answer in Q11C by the charge. N/C times C give N.

