Rotational and Linear Motion

The rotational quantities all have correlations in linear motion.

Linear Quantities		Arc length		Rotational Quantities
Displacement (how far it moves in a straight line)	x (m)	S	θ (rad)	Angular Displacement (<i>theta</i>) (how much of a circle moves: angle)
	Tan	ngential veloc	rity	(ine if inden of a energy ine (es), angre)
Velocity (how fast it moves in a straight line)	v (m/s)	v _t	ω (rad/s)	Angular Velocity (<i>omega</i>) (how fast it turns)
Acceleration (how fast it speeds up in a straight line – or how much the velocity changes)	Tango a (m/s ²)	ential acceler a_t ↑	ration α (rad/s ²)	Angular Acceleration (<i>alpha</i>) (how fast it speeds up in circle –or how much ω changes)
Time (elapsed time)	t (sec)		t (sec)	Time (elapsed time)
		1		

Tangential Quantities

$$s = rθ$$
Tangential quantities allow you to translate between linear and rotational quantities.
Tangential means "at this radius". If a merry-go-round has three rows of horses, the
outside horse is going the fastest *tangentially*, (because it has the greatest radius) but
they are all traveling at the same *angular* (rotational) velocity—they take the same
amount of time to complete each circle.

the linear velocity of the wheel (linear velocity of the center of the wheel)

Kinetic Energy

_

When any object moves it has kinetic energy. When any object spins (or turns) it has rotational kinetic energy. If an object is both moving in a straight line and turning, its total kinetic energy is the sum of both.

$$E_{\text{ktotal}} = E_{\text{klinear}} + E_{\text{krotational}} = (1/2)\text{mv}^2 + (1/2)\text{I}\omega^2$$

For non-spinning objects Ekrotational is obviously zero.

Moment of Inertia

Inertia of a rotating object. For a point mass at a particular radius. $I = mR^2$

Other I's: $I_{uniform disc} = (\frac{1}{2})mR^2$; $I_{uniform sphere} = (2/5)mR^2$

Copyright © 2006, C. Stephen Murray

Car rolling down a hill with rotating wheels.

What if the wheels slip (no rotation)?

$$IF H = 0 \text{ (slides down with} \\ no \text{ friztion})$$

$$U = K (no \text{ roth } K)$$

$$mgh = \frac{1}{2} M v^{2}$$

$$lo(3) = \frac{1}{2} v^{2}$$

$$3o(2) = v^{2} = 60$$

$$V = 7.7 \text{ m/s}$$
Notice v
slides. Sides. Si

Notice v is faster if it slides. So part of the energy goes into rotating the tires.