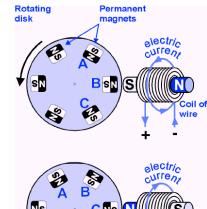

Period:

Magnetic Induction


You "induce vomiting" when someone drinks poison – you force them to vomit.

Magnetic induction is the forcing of electric current by moving a magnet through wire loops.

Right-hand rule: To find the north pole of an electromagnet, simply wrap your right hand fingers in the direction of the electric current (from + to -). Your thumb will point in the direction of the electromagnet's north pole.

Motor or Generator? Depends on if electricity is going in or out.

Electricity In - Work Out. electricity from work (a force and distance). Moving magnets make

Motor-makes work

electromagnets which

tor to move.

push against permanent magnets to cause the mo-

from electricity (stored

work). Electricity makes

Generators versus Motors

A motor and a generator are the same device in

reverse. One can be used as the other.

Generator-generates electricity from magnetic induction. Generators usually move in circles.

Work In - Electricity Out.

What kind of Energy? Thermal; Nuclear; Radiant; Mechanical; Chemical; Electrical			Write in the following formulas (with units)		
An acorn in a tree. Energy from a wall power plug. Something hot.		Fusion in the sun. The light of the sun. In a piece of wood.	- Work	Power	Potential Energy
 Chemical Radiant Thermal Nuclear Mechanical Electrical 	 A. Energy of molecular bonds. B. Energy of moving electrons. C. Energy of the atom being split or fused. D. Light energy—electromagnetic radiation. E. Heat energy. Also caused by friction. F. Energy (kinetic or potential) stored in object and can do work. 			A magnet has a 20 cm magnetic field. If a piece of metal is 18 cm from the magnet, will it be attracted or not?	
	If the three magnets are <i>attracting</i> each other, label N and S on the second magnet.	 N S If the two magnets are <i>repelling</i> each other, label N and S on the second magnet. 	 Efficiency Percent Transformation Law of Conservation of Energy 	good a machine tion is). C. Energy can neve transformed.	ncy. ut to work in (how or energy transforma- er be lost or gain, just one form to another.

2. Power B. 3. Work C.	 A. Anything that attracts or repels another magnet or magnetic material. B. Where a compass points to (in Hudson Bay, Canada). C. Becomes a magnet near a magnet, then loses its magnetism when moved away. D. The North Pole; where maps point to as north. E. Does not lose its magnetism: lodestone and magnetite are only types. Uses energy and can create energy. The units for energy and work. The rate of doing work; how fast you do work. Has the ability to create forces; stored work. 	 Core Iron Compass Electromagnet Magnetic field Making an object "float" with magnets to reduce friction. Uses work to spin magnets and make energy. Forcing energy into wires by moving magnets. Uses energy to cause electromagnets to turn and do work. 		
A 30 N rock is mo	Which of the four forces are doing work on the object? Which are not?	A 10 kg cart is accelerated 4 m/s ² in 3 meters. How much work did the force do? A 40 watt bulb is run for 3 seconds. How much energy is used? How far up can a 200 N elevator be lifted with 600 J of energy? A rock is thrown 1.8 meters into the air. Find how fast it was thrown?		
How much kinetic	6 meter ledge has how much potential energy? c energy can it have if it falls? d on a table for 10 seconds, but it stays on the work is done?	You push 5 N for 20 meters to lift a 10 N object 6 meters. Find the efficiency of the pulley. How many support ropes does it have?		