Name:
remoth>Ch. 4:3Name:
remoth>Incline PlanesOutsing Forces to find MAUsing Distances to find MAFourt = Fw
vertically).Fin = - force it takes to pull the
object up the tramp (measured
parallel to the ramp).Fourt = Fw
vertically).Fin = - force it takes to pull the
object up the tramp (measured
parallel to the ramp).Fourt = Fw
vertically).Fin = - force it takes to pull the
object up the incline
plane.MA =
$$\frac{F_{mea}}{F_m} = \frac{100 \text{ N}}{25 \text{ N}} = 4$$
Data and the incline
plane.In this incline plane multiplies force by 4
Object up this incline plane multiplies force by 4
Object up this incline plane incline plane with 50
N of force. Find the MA of the ramp.Fourt = Fw
MA = ?MA = $\frac{F_{mea}}{F_m} = \frac{400 \text{ N}}{50 \text{ N}}$
MA = ?Ex. A 400 N box is dragged up an incline plane with 50
N of force. Find the MA of 10. If you have a
200 N object, how mach input force do you need?MA = 10
MA = ?
Fwe = 200 N
H MA = $\frac{F_{em}}{F_m} = \frac{400 \text{ N}}{50 \text{ N}}$
 $F_m = \frac{F_{em}}{F_m} = \frac{200 \text{ N}}{10 \text{ D}}$
 $F_m = \frac{F_{em}}{F_m} = \frac{200 \text{ N}}{10 \text{ D}}$ Ex. You have an object, how mach input force do you need?MA = 10
MA = ?
Fwe = 200 N
H MA = $\frac{F_{em}}{F_m} = \frac{200 \text{ N}}{10 \text{ D}}$ Ma = 10
M = $\frac{F_{em}}{F_m} = \frac{200 \text{ N}}{10 \text{ D}}$ How = $\frac{F_{em}}{F_m} = 20 \text{ N}$

In algebra you can combine equations that have a common variable:

$$F = ma$$

$$F = (m) \frac{\Delta S}{\Delta T} = \frac{m(\Delta S)}{\Delta T}$$

You then have a NEW formula to work with.

Combining Equations

Likewise, we can combine the two formulas for MA.

$$\frac{F_{out}}{F_{in}} = MA = \frac{D_E}{D_R}$$
$$\frac{F_{out}}{F_{in}} = \frac{D_E}{D_R}$$

If you know three of the variables, you can find the fourth. Ex. You have to move a 2000 N block up 4 meters, but your machine can only pull with 100 N. You decide to use an incline plane. How long would it have to be?

$$F_{out} = 2000 \text{ N}$$

$$F_{in} = 100 \text{ N}$$

$$D_{R} = 4 \text{ m}$$

$$D_{E} = ?$$

$$\frac{F_{out}}{F_{in}} = \frac{D_{E}}{D_{R}}$$

$$\frac{D_{E}}{D_{E}} = (4m)(20) = 80 \text{ m}$$

$$A \text{ VERY long ramp}$$

$$makes the job easy!$$

www.aisd.net/smurray

Name:

Period:_

Type of Lever:

$1.F_{\rm w} = mg$	А.	Equation for conservation of momentum.
2. F = ma	В.	Equation for weight.
3. MA = D_E/D_R	C.	Equation for Mechanical Advantage using distances.
4. MA = F_{in}/F_{out}	D.	Equation for momentum.
5.p = mv	E.	Equation for Newton's second law.
$6. m_{\rm L} v_{\rm L} = m_{\rm R} v_{\rm R}$	F.	Equation for Mechanical Advantage using forces.

Give the question for determining which Give the question for determining which has more inertia: has more momentum:

<u>Input</u> Force (F _{in}) or <u>Output</u> Force (F _{out})?	Distance of Effort (D_E) or Distance of Resistance (D_R) ?	
Pulling a block up a ramp.	How high you have to lift the object.	
The weight of the block.	The length of the ramp.	
You pull a 45 N object up an incline plane.	You use 7 N to pull an object up an incline plane.	
It takes 15 N to pull an object up an incline plane.	You lift a 35 N object up 5 meters.	
You pull a 100 N object up a ramp with only 20 N of force.	Which of Newton's Three Laws Applies?	
Find MA.	A jet moves forward by pushing air backwards.	
	To change direction a spacecraft has to use thrusters.	
	When you push harder on a bike's pedals it moves faster.	
You use a 36 m incline plane to lift a rock up 6 m. Find MA.	You are pulling an object up 1 m with a 5 m ramp. You pull with 20 N of force. How much does the object weigh?	
A ramp has an MA of 5. You are lifting an object up 3 meters. How long is the ramp?	Then, find the mass of the object	
	Then, find the mass of the object.	
	A young hockey player on frictionless ice shoots a 1 kg hockey	
You pull a bock up an incline plane with 7 N of force. If MA is 4, how heavy an object can be lifted?	puck 150 m/sec toward the goal. If the hockey player slides backward at 3 m/sec what is his mass.	