

Period:

requires more force.

10 kg	50 N force pulls on a g object, how much eration will occur?
Variables:	Solve:
50 N = F	F = ma
10 kg = m	50 = 10a
a = ?	50 IQa
Equation	$\frac{1}{10} = \frac{1}{10}$
Equation: E – ma	$a = 5 m/s^2$

Ex. A force of 49 N causes a 7 m/s ² acceleration. Find the mass of the object it was pulling.				
Variables:	Solve:			
49 N = F	F = ma			
$7 \text{ m/s}^2 = a$	49 = m7			
m = ?	$\frac{49}{2} = \frac{m\chi}{2}$			
Equation: F = ma	$7 \qquad \chi \\ m = 7 \ kg$			

more force and wear out engine parts

and brakes faster.

Variables:

 $40 \text{ m/s}^2 = a$

50 kg = m

Equation: F = ma

F = ?

Force equals mass times acceleration.

Ex. How big a force does it take to give a 50 kg object an acceleration of 40 m/s².

Solve:

F = ma

F = 50(40)

 $F = 50 \times 40$ F = 2000N

		125 kilo	ograms	Which of Newton's Three Laws Applies?
2. m =		23 kg	gm/s	Law 1, 2, or 3?
3. a =		3 m	$/s^2$	When you put a book on a table the table pushes on the book
4. v =		29 mete	ers/sec	A person is pushed forward into their seatbelt when a car
5. D = 228 meters 6. p = 6 newtons		228 meters		stops.
		tons	A larger car takes more force to move.	
1. Inertia A. An action that can causes motion.			notion.	A person leans on a wall and the wall pushes back.
2. Mass B. Force pulling all object toward each other		vard each	A brick sits on a table until you push on it.	
3. Gravity	other. C. The amount of matter in an object		obiect	Understanding Net Force Which way will
4. Net force		l of the forces on	•	it accelerate?
5. Force		an object to resis	•	30 N
Number	these from least	(1) to most (5) in	nertia.	
A baseball A	small A tru	ck A feather	A large train	6 N
Number th	ese from least (1)	to most (5) mor	mentum.	
	Parked Slow		Fast	15 N
	truck	baseball	feather	
	pulled to the left bree. Find the net		log pulling with	h A 20 kg bike accelerates at 10 m/s ² . With what force was the person pedaling?
5 Newtons of fo	on a cart to the rulls to the left wi	force.	of 10 N and a	person pedaling? If a person is pushing a cart with a force of 40 Newtons and it