

Period:

We know that waves move. Yet waves can be trapped between *boundaries*. These are known as *standing waves*.

A jump rope is a good example of a standing wave.

To keep a standing wave going it needs to have a *driven end:* an end that gives energy to the wave. Jump ropes have *two* driven ends.

The places of no amplitude are called *nodes*. The places of greatest amplitude are called *anti-nodes*.

trough Wave motion

A moving wave.

Standing waves are TRAPPED between boundaries, so we show both the crest and the trough in the same place at the same time. In reality, though, it alternates: going up and down, just like a jump rope.

In a standing wave, each anti-node is onehalf of a wavelength.

1 Anti-node = $(1/2)\lambda$

2 Anti-nodes = λ

In a *moving* wave, the wave moves away from what drives it. Waves that move away from a rock in a pond are driven by the force of the rock pushing through the water.

A graph of the fundamental wave for this distance.

The largest wave that can be produced in a certain distance is called the *fundamental*. It is onehalf of one wavelength long.

Harmonics

Harmonics are waves that are whole number multiples of the fundamental. *Harmonics* have nodes at the boundaries. Harmonics sound louder, keep their energy longer, and take less energy to produce.

Frequency of Harmonics

Examples of Fundamentals and their Harmonics									
$H_1(f_f)$	H_2	H_3	H_4	H_5					
1 Hz	2 Hz	3 Hz	4 Hz	5 Hz					
2 Hz	4 Hz	6 Hz	8 Hz	10 Hz					
5 Hz	10 Hz	15 Hz	20 Hz	25 Hz					
10 Hz	20 Hz	30 Hz	40 Hz	50 Hz					

Frequency of $f_{Hx} = f_f(X)$ # of the Harmonic (in Hz) Frequency of the fundamental (in Hz) Ex. If the fifth harmonic has a Ex. Find the frequency of the frequency of 55 Hz, find the third harmonic (H_3) of a 4 Hz fundamental. fundamental frequency. $f_f = 4 Hz$ $f_{H5} = 55 \text{ Hz}$ $f_{Hx} = f_f(X)$ $f_{Hx} = f_f(X)$ $f_f = f_{Hx}/X = 55 Hz/5$ $f_{H3} = (4 \text{ Hz}) x (3)$ X = 5X = 3f_f€11 Hz $f_{H3} = ?$ $f_{H3} = 12 \text{ Hz}$ $f_f = ?$

www.aisd.net/smurray

Copyright © 2004, C. Stephen Murray

Period:

 Boundary Standing wave Harmonic Fundamental Driven end Node Anti-node f = 	 A. The part that is r B. Where wave's at C. Where the wave D. A wave that is a wave. E. A wave that is tr F. The first harmor equal to 1/2 its v G. A place that limit 	noved to give energy nplitude is greates has no motion. multiple of anothe apped within boun ic of a standing wa vavelength. ts a wave's motion 8 m/s	gy. t. r daries. ave, 1.	Position 10 20 30 40 50	Posit	tion vs. 7	Гime	# of cycles: Period: Frequency: Amplitude:
2. v =	8 sec		0 .25 .5 .75 1 1.25 Time (sec) If a wave's frequency is 25 Hz, what is its period?					
3. $\lambda =$ 4. T =	8 Hz 8 m	L						
A string has a funda monic 3 (H ₃).	ar-	If a wave's period is 0.1 sec, find its frequency.						
If 20 Hz is the fund		If a wave has a frequency of 50 Hz and a wavelength of 2 meters. Find its speed.						
If 35 Hz is H ₇ , what	is the fundamental fre	equency?		A wave's ve it's frequenc	elocity is 2 cy?	20 m/sec	with a wav	velength of 40 m. What is
20 A 10 10 0 -10 -20 0	E D F 1 2 Dis	G tance (m)			One c Half c Two c Total Wave 5 Ampl	cycle: A cycle: H cycles: E cycles: elength: itude: _	to; C to; J t 3 to; E	to; F to to; B to D to; E to
The followin 5 harmonics o	g table shows the freq f different strings. Fill	uencies of the first in the blank space	es.	Find its per	iod:			
1 2	2 3	4	5	What harmo	onic is this	s?		
4 Hz 6 Hz				Mark the nodes and anti-nodes.				
	Hz 36 Hz	44 Hz		Find the fundamental frequency:				
A fellow student sh string. Which one v Frequencies: 12 Hz	ows you the frequenci would you question an ; 24 Hz; 29 Hz; 48 Hz	es of four harmonio d why?	cs of a	3rd harmon	ic frequen	cy:		40 Hz